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ABSTRACT - 4D-variational assimilation (4DVAR) is used to combine ADCP velocity observations with the Navy Coastal Ocean model
(NCOM) to obtain an optimal solution that minimizes a cost function containing the weighted squared errors of velocity measurements,
initial conditions, boundary conditions, and model dynamics. However, in order to converge to the global minimum of this cost func-
tion, the ocean model (and its adjoint) must be linear. Ocean models, especially those that are designed to resolve baroclinic and
mesoscale processes, are typically highly-nonlinear and must be linearized. Tangent linearization is a linearization method that is per-
formed by expanding the nonlinear dynamics about a background field using the first order approximation of Taylor’s expansion. The
accuracy and stability of this tangent linearized model (TLM) is a very sensitive function of the background accuracy, the level of
nonlinearity of the model, complexity of the bathymetry, and the complexity of the flow field. Therefore, in high-resolution coastal do-
mains, the TLM is only going to be stable for a relatively short period of time.

In this paper, assimilation experiments are performed in a high-resolution Mississippi Bight coastal domain. The TLM of NCOM for
this domain is only accurate for about 1 day. The representer method is used to solve this highly nonlinear, weak-constraint, _dDVAR
problem. However, due to the short stability time period of this assimilation problem, the representer method is cycled by splitting the
time period of the assimilation problem into smaller cycles, therefore ensuring TLM stability and proper data assimilation. The cycle
time period needs to be such that it is short enough for the TLM to be stable, but long enough to minimize the loss of information due to
reducing the temporal correlation of the dynamic error. We have found that for the Mississippi Bight experiments presented in this
paper that a cycle length of 1 day works best. For each new cycle, a background is first created as a nonlinear forecast from the previ-
ous cycle’s assimilated solution. Then, data that falls within the time period of the new cycle is used to calculate a new assimilated solu-
tion using the previous cycle’s forecast as the background.

The cycling representer method has been previously demonstrated to drastically improve assimilation accuracy with simpler nonlin-
ear models. Now, this assimilation method is being applied to NCOM. This assimilation system is demonstrated in the Mississippi
Bight by assimilating velocity measurements from an array of 14 ADCP moorings for the month of June, 2004. The initial condition for
the first cycle, the boundary conditions, and the background around which the TLM is expanded comes from an operational global
NCOM. The weak-constraint cycling representer method corrects the velocity components of initial conditions, boundary conditions,
and dynamics. This paper will demonstrate the improvement of assimilation accuracy as the time window of the cycles is reduced to 1
day, but when 12-hour cycles are used, the system begins to lose skill. It will also be demonstrated that the forecast skill will be im-
proved as the assimilation system progresses through the cycles.

I.  INTRODUTION

Improving the capability to model and forecast the fundamental properties of the ocean has been the endeavor of numerous
universities, institutions, and agencies for many decades. These institutions have their reasons for wanting the increased model-
ing capability and their reasons require resolution with very large spatial and temporal scales (global) all the way down to small
scales (littoral, coastal regions). The primary oceanic processes that govern the motion and physics of the ocean are going to be
drastically different between these extreme differences in scales. For example, the ability to model and predict the ocean in a
small scale coastal domain is going to require a different strategy than say a large scale open ocean domain. Processes governing
the oceanic properties in the small-scale coastal domain will rely more heavily on the bathymetry, coastal geometry, mixing, river
inflow, and other nonlinear (NL) interactions. Therefore, it is safe to say that the system required to accurately model and fore-
cast in such a region will generally need to be more sophisticated.

One of the key components to accurately forecasting the ocean, regardless of the resolution scale, is data, and how best to
merge the data with the model. Since models are always going to be in error and data is almost always going to be scarce relative
to a discretized model, the big question is how does one extract the most information possible from the data and apply it to maxi-
mize its influence on the model. Simpler data assimilation techniques such as nudging, optimal interpolation, and even 3DVAR
have a limited range of influence on the model state (especially in the temporal dimension) and they do not take into account the
physics of the model. These techniques may be adequate and desirable for large-scale open ocean models since they are computa-
tionally cheaper relative to the more sophisticated techniques, and the open ocean is generally less dynamic and more linear,
therefore causing the model to be more accurate in this region. Ocean dynamics, however, become increasingly complex in
coastal and littoral regions due to the larger influence of baroclinic and NL processes as well as the complex geometry and inter-
actions with land. Computationally intensive assimilation techniques may not be feasible for very large domains but in small
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coastal regions, advanced data assimilation is not only feasible, it is crucial in order to properly account for the complex physics
in these types of regions. Advanced sequential data assimilation techniques such as the various Kalman filters take into account
the model physics and can propagate the influence of the data forward in time through the model. However, with the rapid in-
crease in computational resources, 4-dimensional variational assimilation (4DVAR) is rapidly becoming a popular assimilation
technique since it not only can propagate the influence of data forward in time but also backwards in time (through the adjoint)
and can correct the initial conditions of the model.

One of the more sophisticated tools that can be used to solve 4DVAR problems is thé representer method developed by An-
drew Bennett from Oregon State University ([2], [3], [4], & [5]), and is currently being employed by several institutions whom
are developing assimilation systems with complex, baroclinic ocean models. For example, [8] and [9] are using the representer
method to assimilate data with ROMS and ADCIRC respectively. One of the biggest challenges in developing a representer
based assimilation system is that the model and its adjoint must first be linearized about a particular background. Since the lin-
earized version of the model (TLM) is a simplification of the full NL version, it will only be accurate and numerically stable for a
finite period of time. There are many factors that contribute to how long the TLM can remain stable, such as the level of nonlin-
earity of the model, the accuracy of the background, and the complexity of the bathymetry. Needless to say that for a small-scale
coastal application (which is an ideal application for this assimilation method), the time period of TLM stability is going to be
relatively short.

The cycling representer method was first introduced and applied by [16], and can be used to overcome the problem of TLM
stability. Ref. [16] cycled the representer method in time with a linear 1-dimensional transport model in order to lay down the
concept. Then in [17] the authors applied the cycling representer method to a linear, barotropically, unstable shallow water sys-
tem. In these two applications there was no issue with the TLM since both models were linear. More recently, [12] and [13] ex-
plored the idea of applying the cycling representer method to the NL Lorenz attractor and reduced gravity ocean models respec-
tively. In these two papers, an initial background is first created by propagating the NL model forward over the first cycle time
period. Then the TLM and adjoint of these perspective models is used to perform an assimilation with the representer method.
For the second cycle, a background (forecast) is created by using the final assimilated solution from the first cycle and propagat-
ing the NL model forward over the second cycle time period, and then performing an assimilation using this new background.
This process is repeated for all subsequent cycles. Ref. [12] and [13] demonstrate that the cycling representer method can be ex-
tremely beneficial in situations where the TLM is not stable for a long enough period of time. It is shown that cycling not only
eliminates the difficulties associated with an unstable TLM, it significantly reduces the overall cost of the assimilation, particu-
larly when the need for outer loops is dropped. Outer loops are typically required for NL models; they are iterations over the lin-
earizations of the NL Euler-Lagrange problem associated with the minimization of the cost function involving the NL model [9].
By using the Cycling Representer Method, there is a good chance that the need for outer loops can be dropped, because the back-
ground is being updated in each cycle. Ref. [12] and [13] demonstrate that once the system is spun-up (typically after the first
few cycles), the background is trained towards the data and the TLM is accurate enough to eliminate the need of outer iterations.

Previous applications of the cycling representer method have been with either linear models or simple, low-dimensional NL
problems. In this paper, the validity of the cycling representer method is taken one step forward and demonstrated in a realistic
application with the Navy Coastal Ocean Model (NCOM). NCOM is a NL, multi-layered, baroclinic ocean model designed to
resolve coastal features [1]. Experiments are performed by assimilating velocity measurements from an array of 14 ADCP moor-
ings deployed on the shelf and slope of the Mississippi Bight during the month of June 2004 (Fig. 1). The data set and region
used in these experiments are optimal in demonstrating the importance and uniqueness that this assimilation technique offers.
This is because velocity measurements have always been notoriously difficult to assimilate into ocean models [14]. This is espe-
cially the case in highly dynamical shelf-break regions such as the Mississippi Bight where the circulation is dominated by multi-
ple processes such as inertial oscillations, winds, and intruding eddies [15]. All ocean models (including NCOM) have a difficult
time accurately accounting for all of the dynamics in a shelf-break region and matching a high-resolution velocity data set (such
as the one used in this study). Prior to the assimilation experiments, NCOM results were compared to the data set, and there were
many features observed in the data that were not resolved by the model. Most assimilation techniques can not handle this dis-
crepancy, and would produce dynamically inconsistent results. The cycling representer method is unique in that by assimilating
over shorter periods of time and continuously updating the background, there is an improved capability of keeping the solution
inline with the data and increasing its accuracy with subsequent cycles. More importantly though is that initial condition, bound-
ary condition, and dynamic error covariances can be specified to account for the unresolved model dynamics. Therefore, during
the cost-function minimization, the dynamics, along with the initial and boundary conditions, will be modified over the entire
space and time domain to produce a dynamically consistent solution (within the specified error limits) that best matches the data.

This paper is a continuation of previous work ([12] and [13]) and is an ongoing effort to demonstrate the importance and use-
fulness of applying the cycling representer method to an operational assimilation system for coastal regions that can assimilate a
wide variety of measurement types and produce accurate forecasts in real-time. In the next section of this paper, the setup of the
experiment will be described. This includes a description of the domain, the model, the data, and the assimilation technique. In
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Fig. 1 The Mississippi Bight domain used for this study (black box). The 30X34 black dots represent the discretized grid of the model and the 14
numbered gray stars represent the ADCP mooring locations.

the third section, the assimilation results will be presented and discussed. Then, the final section will contain some concluding
remarks.

II. EXPERIMENT SETUP

A.  The Nonlinear Forward Ocean Model

The forward ocean model used in this assimilation experiment is NCOM. NCOM is a free-surface model based on the primitive equations
and the hydrostatic, Boussinesq, and incompressible approximations. In many ways NCOM is similar to the Princeton Ocean Model (POM), in
that it uses an Arakawa C-grid, is leapfrog in time with an Asselin filter, and uses Smagorinsky coefficients and the Mellor-Yamada 2.5 turbu-
lent closure scheme to parameterize the horizontal and vertical mixing coefficients respectively. NCOM is different from POM primarily in that
the free-surface is computed implicitly and NCOM uses both sigma coordinates for the upper layers and z-level coordinates for the lower layers.
Further details of NCOM can be found in [1]. Fig. | displays the NCOM grid that will be used for the NL forward model, the TLM, and the
adjoint model needed for the assimilation experiments in this paper. The 30X34 black dots represent the center points of the Arakawa C-grid
and are spaced 2.5km apart, requiring a 4 minute time-step for numerical stability. In the vertical, there are 40 layers with 19 sigma layers in the
upper 137m to resolve the shelf-break.

The forward ocean model has several distinct purposes within the cycling representer system. First, a global solution is needed for the initial
conditions for the first cycle, and the open boundary conditions for each time-step of the entire time period. In regards to this paper, the phrase
global solution means a solution that is larger than the assimilation domain. For these experiments, historical results are extracted from the op-
erational 1/8° global NCOM [1] and used for this purpose. Since the horizontal and temporal resolution of the historical global NCOM solu-
tions are significantly lower than what is needed for these experiments, they are linearly interpolated to the experiment domain and time-steps.
Vertical interpolation is not needed because the Mississippi Bight domain uses the same vertical structure. The second purpose of NCOM is to
use the initial and boundary conditions from the above global solutions and propagate the NL model forward over each of the cycle time periods
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for the Mississippi Bight domain to create a background solution for each cycle. Note that the global initial conditions are only needed for the
first cycle; subsequent cycles use the final assimilated solution from the previous cycle as the initial conditions for the NL background forecast.

B.  The Tangent Linearized Ocean Model and its adjoint

Since the Representer assimilation technique is essentially performed by minimizing a quadratic cost-function, the model must
be first linearized in order for an absolute minimum of the cost function to be determined. This is accomplished by using the
first-order approximation of Taylor’s expansion of the NCOM dynamics expanded about the above mentioned background.

ATL;:MB(5+M("7_iBG) (1)
XgG

In the above equation, A is the NL model, x is the solution state, and %, is the background state. The accuracy of the TLM is
plotted for the first 10 days in Fig. 2. TLM accuracy is defined as the root-mean-square (RMS) of the velocity difference between
the NL background and tangent linearized solutions. As can be seen, the TLM is fairly accurate for only about a day, which is a
relatively short period of time. There are many reasons why the TLM stability is short. The first and foremost reason is that
NCOM contains many highly non-linear dynamical components that require linearization such as: the Smagorinsky horizontal
mixing scheme, the Coriolis and curvature terms, density, advection, and every time depth is used (in NCOM, depth includes
SSH). In these experiments, bottom friction and the Mellor-Yamada vertical mixing scheme are not linearized and are based fully
on the background state. The inclusion of these two linearized components was attempted, but the TLM was too unstable in order
to perform a reasonable assimilation experiment. The second important criterion that impacts the TLM stability is the accuracy of
the background solution. Global NCOM has roughly 1/5 the horizontal resolution and 1/90 the temporal resolution (global
NCOM solutions are archived every 6hr) relative to the local Mississippi Bight model. Therefore, since the background is de-
rived from the initial and boundary conditions of Global NCOM, the initial background is going to be in significant error; it is
smooth and lacks small-scale features. Another important condition that is reducing the TLM stability is the steep bathymetry in
the southeast corner of the domain. This steep bathymetry is amplifying the NL baroclinic processes occurring at the shelf-break.

Another key component of the Representer method is of course the adjoint. If the TLM is expressed in matrix form, as in (1),
then the adjoint is simply the transpose of the TLM, (Anfc)r . The TLM of NCOM, however, is not in matrix form and the ad-
joint was manually generated by reversing all of the operations in space and time.
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Fig 2 TLM stability is represented here by the evolution of the RMS of the velocity difference between the tangent linearized and nonlinear solu-
tions of NCOM. The TLM maintains relative accuracy for only about the first day, and then the error of the TLM surpasses 1 m/s after about 3
days of propagation.
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C. ADCP Data

In May 2004, the Naval Research Laboratory (NRL) deployed an array of 14 ADCP moorings for 1 year along the shelf, shelf-
break, and slope of the Mississippi Bight (about 100 miles south of Mobile, Alabama). These moorings were spaced about 10-20
km apart and are identified in Fig. 1 as numbered grey stars. Moorings 1-6 consisted of trawl resistant bottom mounted ADCPs
located along the 60m and 90m isobaths. The measurements collected from these shelf moorings were binned into 15 minute
time intervals and 2m depth intervals. The slope moorings (7-14) consisted of long-range ADCPs buoyed at 500m depth and lo-
cated along the 500m and 1000m isobaths. Velocity measurements for the upper 500m were collected and binned in 1 hour time
intervals and 10m depth intervals. Even though the tides in this region have relatively small amplitudes, the tidal signal is re-
moved from the data by means of a 40-hour low-pass filter. Ref. [15] provides a more extensive description of this collected data
set.

For the experiments presented in this paper, ADCP velocity measurements were extracted from the above data set for the
month of June 2004. However, since the measurements have a very high resolution in the vertical and temporal dimensions, it is
unrealistic to assimilate all of the velocity measurements, even with a very short cycle. For the entire time period of this experi-
ment, there are roughly 1.75 million individual measurements (the u- and v- components of velocity are considered as 2 distinct
measurements). Therefore, the data must be sampled at a prescribed temporal and vertical frequency. After careful examination
of the entire dataset it was apparent that the dominant feature in time was inertial oscillations with a frequency of about 12 hours.
To resolve these features, an assimilation frequency of 3 hrs was selected. In the vertical, it was apparent that on average the ve-
locity profiles can be generalized with five or less layers. Therefore, at every 3 hr increment the two components of velocity are
assimilated at up to five different depths at each of the 14 mooring locations. Therefore, the average number of measurements for
a 12-hour cycle, for example, is 538. The five measurement depth locations are automatically selected independently at each as-
similation time increment and at each horizontal mooring location. For each of these assimilated velocity profiles, the four
strongest vertical gradients in velocity are determined and used to define the interfaces between the 5 layers. Then the measure-
ment closest to the center of each layer is the one that is assimilated. If there is not a unique measurement in between two inter-
faces then that particular layer is ignored. '

For each of the assimilated measurements, a measurement functional is created to translate the measurement from data space
into the state space. The measurement functional can be as simple as a 1.0 at the grid point closest to the measurement location
and zeros for the rest of the state. Since not all of the data are used, however, it is desired that the measurement functional repre-
sents the region of state space that encompasses the measurement and includes the area of the neglected data. Therefore, each
measurement functional will include representation +1.5 hours of the measurement time, the entire layer that the measurement
represents, and a 3 grid point horizontal radius surrounding the measurement. Each of these grid points, however, does not re-
ceive equal representation. A Gaussian function is used to distribute the influence in all 4-dimensions with the grid point closest
to the measurement receiving the largest representation. Finally, all of the contributions to the measurement functional are scaled
so that they sum up to one. In addition to the actual measurement and its associated measurement functional, a measurement error
is required. Each measurement error is estimated to be the representation error that the assimilated measurement has with respect
to the neglected data that the measurement is representing. This error is calculated by taking the RMS of the difference between
the measurement value and each of the neglected data that falls within the +1.5 hour time window and the layer that the meas-
urement represents.

D.  The Cycling Representer Method

The representer method can be broken down into seven fundamental components: the TLM of the NL model, the adjoint of the
TLM, the background, the measurements, the measurement functionals, the measurement errors, and of course the error covari-
ances. An error covariance ought to be specified for each weak constraint variable that is believed to be in error. However, since
error covariances are one of the more difficult quantities to accurately estimate and can be computationally expensive to include,
it is not feasible to treat all variables in error as weak constraint; and for the variables that are treated as weak constraint, simplifi-
cations must be made in order to construct their error covariances. The assimilation results presented in this paper were computed
by treating the initial conditions, the boundary conditions, and the interior solution of both velocity components as weak con-
straint. The covariance for each of these weak constraint variables was constructed with a constant variance in space and time,
and correlations described by a Gaussian function in space and a moving average in time. An error of Scm/s was used for the
initial and boundary conditions, and an error of lcm/s was used for the interior solution. The Gaussian functions used to esti-
mate the correlation were formulated with an e-folding scale of 15 grid points in each of the 3 spatial dimensions and 2 hours in
time.

The formulation of the cycling representer method that is used in this paper is the same as that described in great detail in [12],
therefore it will not be prudent to repeat it here. Other than the seven fundamental components of the representer method men-
tioned above, the only difference between this assimilation system and the one used in [12] is how the background for each new
cycle is computed. The background for each new cycle (other than the first) is computed by propagating the NL model forward
using the final assimilated solution from the previous cycle as the initial condition and boundary conditions from the global solu-
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10-day assimilation experiment. (B) Two 2-day cycle experiments, where the dashed line represents the break between cycles.
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tion. Due to the low-resolution of the global solution, there is a dynamic instability between the initial and boundary conditions.
Therefore, in order for the new background to be stable its boundary conditions must have a smooth transition between the previ-
ous solution and global boundary conditions. To accomplish this transition, each assimilation is run an extra 3 hours over into the
next cycle. Then a time weighted average is used on this solution and the global boundary conditions for these 3 hours to create
smooth boundary conditions for the next background.

As is the case in [12], the representer method for each cycle is solved indirectly using an iterative conjugate gradient method
(CG). This differs from the direct approach in that instead of computing representers for every measurement and inverting the
representer matrix to obtain the representer coefficients, the indirect method uses the CG to iterate through the search directions in
data space to converge upon the representer coefficients that minimize the cost function. The CG is considered converged when
the norm of the residuals relative to the initial norm is less than 10. For a well-conditioned system, the number of C( iterations
is significantly less (typically about 10%) than the total number of measurements, therefore resulting in a substantial savings in
computational cost compared to the direct method.

III. RESULTS

A.  Cycling Experiments

As a precursor to the cycling experiments, a long 10-day assimilation experiment is performed, and the resulting solution misfit
(red) is plotted in Fig. 3a. The background misfit (blue) is also plotted for comparison. These misfits are computed at each of the
3-hour assimilation time increments and are the RMS of the difference between the data and the solution(background) acted upon
by the same measurement functional described in Section 2¢. The results in Fig. 3a reveal that there is a fairly consistent correla-
tion between the accuracy of the assimilated solution and the TLM stability (Fig. 2). After the first day the assimilated solution
begins to lose accuracy and by day 3 the errors in the solution begin to increase exponentially. Since the TLM is only stable for
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about a day, the assimilation cycle should be equal or shorter to this in order to ensure a stable and accurate solution. It should be
noted that the CG in this assimilation experiment did not converge and was not going to converge; the problem was too ill-
conditioned. The CG was stopped after 104 iterations of the conjugate gradient, and a final sweep was performed with the best
estimate of representer coefficients that had been obtained up to that point.

Several different cycling experiments were performed to determine the optimal cycle time period that produces the solution
with the overall best fit to the data. The optimal cycle time period needs to be short enough to ensure stability of the solution, and
as long as possible to maximize the temporal correlation of the data and model. The first cycling experiment was performed us-
ing 2-day cycles. The misfit results are displayed in Fig. 3b and reveal that the first cycle did quite well, but the second cycle
began to severely lose skill midway through the cycle. At the end of the second cycle the solution was too poor to provide a suf-
ficient initial condition for the next background forecast (the forecast grew numerically unstable). The dashed black line in this
figure represents the break in between cycles and the vertical blue line segment along this dashed line is a result of the back-
ground being reinitialized to the assimilated solution. It appears that a 2-day cycle time period is a little too long to ensure solu-
tion accuracy. This falls in line with the time frame of TLM stability.

Fig. 4 displays the resulting misfits for the next cycling experiment consisting of 12-hour cycles performed over 28 days.
Overall, this assimilation experiment did quite well and there were no problems with providing a dynamically consistent solution
as an initial condition for the forecasts. There are some ups and downs in the general trend of the solution misfit, but overall the
misfit is improving through the cycles as will be verified in the next sub-section below. This plot is somewhat misleading in that
it may initially appear that the solution misfit is not much better than the background misfit and that the background misfit is fol-
lowing the same general downward trend. One must remember that the background is continually being reinitialized to the solu-
tion at the end of each cycle, and since the time period is so long and there are so many cycles, there is not much space for the
background misfit to grow. Despite this fact, the overall correlation coefficient between the solution and the data is 0.411,
whereas the correlation coefficient between the background and data is 0.285. This improvement is very promising, especially
when you factor in how difficult it is to correct a 4-dimensional velocity field towards a large dynamic dataset while maintaining
dynamic stability of the model. To demonstrate this dynamic stability and the general improvement of the assimilated solution,
time series of the velocity components for the background (blue), solution (red), and the data (black) are plotted in Fig. 5 for two
selected locations: (a) the first layer of mooring 7 and (b) the fifth layér of mooring 13 (mooring locations are labeled in Fig. 1).
The assimilated and background solutions are taken at the grid point and depth location that is closest to each velocity measure-
ment. The colored values are the correlation coefficients between the background(solution) and the data for their corresponding
time series.

The final cycling experiment consists of 12 1-day assimilation cycles and the misfits for this experiment are displayed in Fig.
6b. For comparison, the first 12 days of the 12-hour assimilation cycle experiment is plotted in Fig. 6a. After careful examina-
tion of these two plots, it is apparent that the 1-day cycle experiment is outperforming the 12-hour cycle experiment. The solution
misfits in the 1-day experiment obtain lower values relative to the 12-hour cycle experiment, and the overall slope has a steeper
downward trend. Also, in the 1-day cycle experiment there is a significant improvement in the background misfit. This is be-
cause there is a steep downward trend starting at the middle of each cycle. It is believed that this drastic change in the back-
ground misfit is due to the inertial oscillations, which are relatively strong in this region and have a frequency of about 12 hours.
It appears that the longer 1-day cycles are able to better resolve the inertial oscillations and therefore produce a more accurate
solution that better matches the observed flow field. This result demonstrates the importance of choosing a cycle time period that
is long enough to include the important dynamic features that are prevalent in the region.

B.  Performance of the Cycling Representer Method

In order to help analyze the performance of the Cycling Representer Method and gauge how well it might do if the system were
allowed to continue to cycle indefinitely, several post-processing results are presented here for the entire 12-hour assimilation
cycle experiment. To demonstrate the value of solving the Representer Method indirectly, Fig. 7 shows the evolution of the CG
convergence for each of the 56 cycles (black lines). Overlaid on this wide spread of results is the best-fit exponential curve (thick
red line). This curve conveys that the average total number of CG iterations required to reach convergence is about 62, which is
roughly 12% of the average number of measurements in each cycle (538). This result corresponds to a substantial savings in
computational cost and reveals that the assimilation problem is well-conditioned.

Fig. 8 displays the total number of required CG iterations (blue line) and the total cost of the cost function (green line) relative
to the 12-hour cycles. Both of these results are quite noisy, but over the entire 28 time period their corresponding linear best-fits
have a downward trend. The slight overall decrease in the number of required CG iterations as the system is cycled suggests that
the assimilation problem for each consecutive cycle is becoming better conditioned, and the steep downward trend of the total
cost reveals that the overall fit between the assimilated solution and the data, dynamics, initial conditions, and boundary condi-
tions is improving as the cycling progresses forward. It is uncertain how long these trends would continue in this fashion if the
cycling were to continue beyond the 28-day period of this experiment. This result, however, is promising in that this time period
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Fig. 6 (A) displays the first 12 days of the 12-hour cycle experiment from Fig. 4 (plotted for comparison) and (B) displays 12 1-day assimilation cycles.
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Fig. 7 The evolution of CG convergence criteria for each of the 56 12-hour assimilation cycles (black lines). The convergence criterion is calculated as

the norm of the residuals relative to the initial norm and is assumed converged when it is less than or equal to 10~ . The red line is the exponential best

fit of the spread of CG convergence plots, showing that on average the 12-hour cycle converged in about 62 CG iterations. This is about 12% of the
average number of measurements (538) in each cycle.

is long enough to contain a significant portion of the dynamic features that are prevalent in this region, and there is no reason to
assume a drastic change in these trends.

IV. CONCLUSIONS

Even though the TLM of NCOM is only accurate for about a day, the cycling representer method can be used in conjunction
with the CG to achieve an improved analysis of the flow field for what appears to be an indefinite period of time. Also, because
the forecasts are reinitialized to the analysis field at the beginning of each cycle, both the forecast and analysis errors decrease as
the system progresses through the cycles. Care needs to be taken though in selecting the appropriate time-frame of the cycle. If
the cycle is too long and is beyond the range of TLM accuracy, the solution will end up diverging from the data and obstructing
the continuity of the cycling system, as is the case in the 2-day cycle experiment. On the other hand, if the cycle is to short, valu-
able information can be lost due to the lack of temporal representation of important dynamic features thus causing inaccuracies in
the analysis field, as is the case in the 12-hour cycle experiment. For the system described in this paper, the 1-day cycle experi-
ment performed the best, and this cycle time-period seems to correspond with the outer accuracy limits of the TLM.

Overall, this paper demonstrates that the Cycling Representer Method can potentially be a valuable assimilation tool within an
operational analysis/forecast system for coastal applications. One of the difficulties that would have to be overcome in order to
achieve this operational status (other than improving the error covariances) is that the 1-day cycle period is only optimal for the
specific application described in this paper, and most likely would not be the optimal choice if this assimilation system were to be
applied to a different application. For example, if the assimilation system were applied to a different coastal region, or used a
different background, or had a different resolution, etc..., then the optimal cycle time-period would have to be determined again.
A possible solution to this problem could be to set up an autonomous system that is similar to what is used in [12]. i.e., a system
that automatically defines the maximum time-frame of TLM accuracy as the amount of propagation time required before the dif-
ference between the TLM and the background surpass one standard deviation of the background. Then based on the results of
this paper, the cycle time period can be set to this TLM accuracy criterion.
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